An Energy Efficiency Workshop & Exposition Palm Springs, California #### Wind Energy for Federal Agencies **Ed Cannon** 303-384-6920 Fax 303-384-7029 e-mail: Ed_Cannon@nrel.gov - •80 employees - •Annual budget of - ~\$34M - •Study the application of wind technology and promote its use - •Provide industry support through testing ### Wind Energy Cost #### Cost of Wind-Generated Electricity 1980 to 2005, Levelized cents/kWh Assumptions: Levelized cost at "excellent" wind sites, large June 2-5, 2002 project size, notwinclentingy 2002 (postol-994), costs in nominal cents/kWh. #### U.S. Wind Market Drivers - Declining wind costs - •Fuel Price Uncertainty - •Federal and State Policies - •Economic Development - •Green Power - •Energy Security ### Wind Powering America Program Goals - •Provide at least 5% of the nation's electricity with wind by 2020 - •Install more than 5000 MW by 2005 - •Have more than 10,000 MW on-line by 2010 - •Double the number of states that have more than 20 MW of wind capacity to 16 by 2005, and triple the number to 24 by 2010 - •Increase wind's contribution to federal elect use to 5% by 2010 - •Supplemental goals -Federal agencies-2.5% RE by 2005; 7 1/2% by 2010 #### 22 Wind Power Isn't New - •Not a new concept - •Dates to ancient civilizations - •Many advances have brought efficiency up and costs down ### Wind Energy - □ Wind energy is created by uneven solar heating. - □ Wind energy is kinetic energy--mass and momentum. $P = A \times \rho V^3/2$ - \square Wind energy is proportional to velocity cubed (V³): - If velocity is doubled, power increases by a factor of eight (2³ = 8). - > Small differences in average speed cause big differences in energy production. ### Wind Energy (cont.) - Wind resources are abundant and widely distributed. Most areas have sufficient wind for off-grid power applications. - □ Wind resource maps are published by DOE. - Wind is intermittent, but follows predictable seasonal patterns. ### **Average Annual Wind** Resource Darker shades indicate higher wind resource ## New Detailed Maps Being Created 1987 June 2-5, 2002 | Wind Power Classification | | | | | |----------------------------|---|---|---|--| | Wind
Fower
Class | Resource
Potential | Wind Power
Density at 50 m
W/m | Wind Speed*
at 50 m
m/s | Wind Speed
at 50 m
mph | | 2
3
4
5
6
7 | Marginal
Fair
Good
Excellent
Outstanding
Superts | 200 - 300
300 - 400
400 - 500
500 - 500
600 - 800
800 - 1600 | 5.6 - 6.4
6.4 - 7.0
7.0 - 7.5
7.5 - 8.0
8.0 - 8.8
6.8 - 11.1 | 12.5 - 14.3
14.3 - 15.7
15.7 - 16.8
16.8 - 17.9
17.9 - 19.7
19.7 - 24.8 | 2000 #### NREL's Updated Wind Resource Assessment Status Non-NREL Updated Wind Resource Assessment Status ## Wind Resource Must Be in "Right Place" #### Anemometer Loan Program #### Installation at F. E. Warren AFB, WY - •For initial surveys - •10 anemometers - •20 meter poles - •Installation kit - •Pull data chips monthly and sent to NWTC for analysis - •Contact Ed Cannon or Tony Jimenez at NWTC 303-384-6900 June 2-5, 2002 www.energy2002.ee.doe.gov # Large and Small are Different Large Turbines – 100 kW to 1.5+ MW - •Installed in "wind farm" arrays - Provide power to utility grid - •Require 13 mph average wind sites - •Large investment requires careful analysis #### Small Turbines – 0.5 to 100 kW - •Installed in off-grid and facility-specific on-grid applications - •Provide power using back-up generation or storage - •Designed for reliability, low maintenance - •Require 9 mph average wind sites ## Large and Small Federal Wind Turbines June 2-5, 2002 www.energy2002.ee.doe.gov ### Large Wind Turbines - U.S. windfarms: >4,200 MW and 8 billion kWh per year. - □ Costs are down to <\$1,000/kW installed. - Operating costs are down to <1 cent/kWh. - At good wind sites, costs of energy below5 cents/kWh are possible. - Typical turbine is 750 to 1500 kW, but turbines as low as 50kW are available. - Typical installation is > 1 MW, but individual turbines and small clusters are installed at facilities to reduce utility bills. ### Palm Springs, CA June 2-5, 2002 www.energy2002.ee.doe.gov "Our customers wanted this wind program and it was our job to deliver it. It has turned out to be a huge source of community pride. The turbines are a visible landmark showing the Moorhead Community's commitment to a better world for our children." Christopher Reed, Moorhead Public Service, Moorhead, Minnesota June 2-5, 2002 www. energy2002.ee.doe.gov "Wind is a homegrown energy that we can harvest right along side our corn or soybeans or other crops. We can use the energy in our local communities or we can export it to other markets. We need to look carefully at wind energy as a source of economic growth for our region" David Benson, Farmer and County Commissioner, Nobles County, Minnesota www.energy2002.ee.doe.gov June 2-5, 2002 # Large Wind Turbines (cont.) - □ Large wind turbines should be considered when: - Costs of conventional power exceed 8 cents/kWh. - Annual consumption exceeds 100,000 kWh. - Wind resources are 5.6 m/s (12.5 mph; DOE Class 4) or better. - At least 40 acres of land are available for installation per MW installed capacity. ## Large Wind Turbine Follow-Up - Feasibility studies and wind resource monitoring are usually required. - Purchasing options: direct equipment purchase or power purchase agreement. - □ For listings of consultants, manufacturers, and project developers, use the membership directory of the American Wind Energy Association. ### Federal Wind Studies - Bureau of Land Management, Forest Service, Native American Lands - Secretary of the Interior Norton directed that process be streamlined - BLM screened all planning areas to identify those with highest RE potential - Accelerating revised land use plans - > Training local offices on renewable energy - Seeking showcase projects for quick success # Federal Wind Studies (cont.) - Department of Defense - > 2002 Military Construction appropriation contained \$6 million set aside - Screen all CONUS bases for renewable energy projects on or near military bases - > Air Force lead - Air Force -- Wind - Army -- Solar - Navy -- Geothermal #### Small Wind Turbines - Small turbines are specifically designed for high reliability and low maintenance: - Simple designs: only 3-4 moving parts. - Little or no scheduled maintenance. - O&M costs below 1cent/kWh. - Automatic operation under all conditions. - Small turbines are operating in all 50 states. - Small turbines are relatively inexpensive and enjoy economies of scale: - \$1.90/watt (turbine only) for a 500-watt unit (1.7m rotor frametr). - \$1.60/watt (turbine only) for a 10,000-watt unit (7m rotor diameter). ## Small Wind Turbines (cont.) - □ Small turbines require average wind speeds above 4 m/s (9 mph)--most places fit the bill. - □ Typical cost of energy is 7 cents to 20 cents/kWh at the turbine bus. - With storage, power conditioning, and backup generation, the cost of firm alternating current power at off-grid sites is roughly doubled. # Small Wind Turbines (cont,) - Small wind turbines generally compete in markets with high conventional energy costs--typically 12 cents to 70 cents/kWh: - Remote facilities and residences. - Telecommunications, navigation aids, etc. - Miscellaneous remote site loads (e.g., environmental remediation). - Water pumping, desalination, ice making, etc. - Diesel generator retrofits. - Utility bill reduction. - Greening projects. - □ Small turbines are often used with photovoltaics. Such hybrid systems reduce seasonal variations. ### Examples of modern wind turbines: Southwest Windpower Windseeker 2 or 3 blade designs 500W (400W marine model) vertical furling unregulated versions available June 2-5, 2002 ### Examples of modern wind turbines Bergey Windpower Excel 48V to 120V models 7kW rated power 3 phase AC current rectified at controller (near batteries) voltage regulated at controller 3 pultruded blades (constant chord) 7m rotor ### Reliability and Maintenance - Turbines operate unattended and automatically, even in severe weather. - Reliability and maintenance requirements are design specific. Look for: - Simplicity of design. - Fiberglass blades. - Direct-drive, brushless generators. - Heavy-weight structural elements. - Corrosion-resistant materials and finishes. Important: Check supplier reputations! ## Reliability and Maintenance (cont.) - Best available units require no scheduled maintenance and can operate for 3 to 6 years without attention: - Inspection recommended every 2 years. - At 3 to 6 years, blade leading edge tape must be renewed. - □ Typical design operating life is 30 years. (Some small turbines have been operating for more than 60 years!) ### Grid-Intertie System - □ 3 to 20kW variable speed wind turbine. - □ Power electronics (inverter) converts output to 240 VAC, 1¢. - No batteries. - Grid-connect through dedicated breaker on alternating current load center. - Turbine production reduces purchase of utility power. - Excess production sold to utility. - System shuts down during outage. - Easily retrofitted to current facilities. - □ Fits "distributed generation" concept. # Case Study: On-Grid Farm with Wind System - Clover Valley, Minnesota - Utility bill reduction - World Power Technology Whisper 3000 wind turbine, 3.0 kW, 14.8 ft rotor, 50 ft tower ### Advanced Grid-Intertie System - Incorporates small battery bank (~50kWh). - Ability to isolate service and provide household or facility uninterrupted power supply. - Ability to deliver firm onpeak power for peak shaving. - Battery charging from both wind and utility grid. # Case Study: On-Grid Home with Wind/PV System Rural Boulder County, Colorado, net metering for utility bill reduction World Power Technology Whisper 3000 wind turbine, 3 kW, 14.8 ft rotor, battery-charging, 23 ft tower BP Solar model 590 PV panels, 8.6 kW 54 V DC battery bank Pair of Trace SW5548 inverters, 240 V AC, 1 phase, 11 kW total Total installed cost ~\$100,000 All electric home including heat pump and electric car Passive-solar, super-insulated home design One or more 0.5 to 20 kW variable speed wind turbines. Optional solar. Lead-acid batteries, flooded or sealed type. Static or rotary inverters for direct current/alternating/ current conversion. Backup diesel generator for low wind periods. Renewables typically supply 60% to 85% of energy. Provide 24 h/d power with diesel run times reduced to ~10%. Very small systems (<5 kWh/d) usually have photovoltaics and no diesel. # FAA Beacon Lake Chandalar, AK - •FAA aircraft navigation beacon at Chandalar Lake in Brooks Range, northeast AK. - •Accessible only by air. - •Previously powered by diesel generators--fuel flown in. - •Decided on an all-renewables system in the 1999. - •Two Bergey 7.5 kW turbines on 30 m (100 ft) guyed-lattice towers, 5 kW solar array, 48 VDC sealed battery bank, switchgear, and two Trace sine wave inverters. June 2-5, 2002 www.energy2002.ee.doe.gov ### Sunwize Power System - •Whisper 3000 wind turbine - •1.8 kW PV (Siemens) - •5.8 kW diesel generator - •25.6kWh battery bank - •2-SW4048 4kW inverters June 2-5, 2002 www.energy2002.ee.doe.gov #### Solar and Wind Resources are Complimentary ## Hybrid Systems Make Sense (cont.) - Together, they provide a more reliable and cost-effective power system than is possible with wind, PV, or diesel alone. - Wind and solar often have seasonally complementary resources. - Summer: low wind/high solar. - Winter: high wind/low solar. ## Applying Small Wind Turbines (cont.) - Small wind turbines should be considered when: - The grid must be extended more than 1 km (0.62 miles), or - Costs of conventional power exceed 12cents/kWh, - Annual consumption exceeds 300 kWh, and - Wind resources are 4.4 m/s (9.8 mph; DOE Class 1) or better. # Design Procedure | ii Botoiiiiiio aaiiy loaa logaiioiiioi | 1. | Determine | daily | load | rec | uirem | ents: | |--|----|------------------|-------|------|-----|-------|-------| |--|----|------------------|-------|------|-----|-------|-------| - ____Alternating current or direct current kWh/d; - ____Meter³ water/d at head of ____ meters. - 2. Convert off-grid alternating current requirements to direct current: divide alternating current kWh by 0.7. - 3. Determine monthly average resource values: - For hybrids, need wind (m/s) and solar (kWh/m²/d) resources. ## Design Procedure (cont.) - 4. Use spreadsheet model or tabular/graphical performance data to evaluate daily performance of candidate wind turbines: - Adjust wind speeds for tower height. - Other adjustments: altitude, wind pattern (Weibull K), turbulence. ### **Micro-Siting Example:** #### Obstruction of the Wind by a Small Building June 2-5, 2002 2H www. energy2002.ee.doe.gov ### Design Procedure (cont.) - 5. Iterate component selection to achieve design goal(s): - Usually minimum cost of energy, but also capital cost, payback hurdle point, renewables fraction, backup fuel consumption/emissions, etc. - 6. Finalize design and complete selection and sizing of ancillary (balance of systems) equipment. - 7. Prepare budget and specifications. #### **Small Wind Turbine Towers** - Guyed lattice and tube towers are the least expensive and most commonly used towers for small wind turbines - Tilt-up versions are available for easier installation and maintenance - Adequate space is needed for the guy wires and their anchors - Free-standing towers are used where space is limited ## Key Points - Small wind turbines are a reliable, proven, widely used mature technology for remote site power. - Wind resources sufficient for small wind turbines are available at most locations. - Energy costs from small wind turbines are much less than photovoltaics and usually less than diesel generators. - Complete support, from design to installation, is available from industry. # Key Points (Cont.) - □ Feasibility studies and wind resource monitoring are not usually required. - Purchasing options: - Direct equipment purchase. - Power purchase agreements are rare (but possible). - □ For listings on consultants, manufacturers, and project developers, use the membership directory of the American Wind Energy Association. #### Resources: On The Web #### Wind Powering America: http://www.eren.doe.gov/windpoweringamerica AWEA Web site: http://www.awea.org NREL Web site: http://www.nrel.gov NWTC Web site: http://www.nrel.gov/wind